Towards a computational approach for

Chabauty method

Francesco Maria Saettone
Ben-Gurion University of the Negev

Topics

- A Rational Introduction

Topics

- A Rational Introduction

- What is the Coleman-Chabauty Method?
 - What is a Coleman Integral?

Topics

- A Rational Introduction
- What is the Coleman-Chabauty Method?
- What is a Coleman Integral?

Topics

- A Rational Introduction
- What is the Coleman-Chabauty Method?
- What is a Coleman Integral?

Introduction

- nice curve $=$ smooth, projective, geom. integral
- a curve X is classified according to its genus g

Introduction

- nice curve $=$ smooth, projective, geom. integral
- a curve X is classified according to its genus g
- $\# X(\mathbb{Q})$ is related to g

Introduction

- nice curve $=$ smooth, projective, geom. integral
- a curve X is classified according to its genus g
- $\# X(\mathbb{Q})$ is related to g
- if $g=0,1$ then $\# X(\mathbb{Q})$ can be infinite

Introduction

- nice curve $=$ smooth, projective, geom. integral
- a curve X is classified according to its genus g
- $\# X(\mathbb{Q})$ is related to g
- if $g=0,1$ then $\# X(\mathbb{Q})$ can be infinite
- what if $g>1$?

Figure:

Non-effective results

Falting's theorem, 1983

Let K be a number field and X a nice curve over K of genus g. If $g>1$, then $\# X(K)<\infty$.

Non-effective results

Falting's theorem, 1983

Let K be a number field and X a nice curve over K of genus g. If $g>1$, then $\# X(K)<\infty$.

- Diophantine approximation, Vojta-Bombieri, 1991
- p-adic period map, Venkatesh, 2018

Non-effective results

Falting's theorem, 1983

Let K be a number field and X a nice curve over K of genus g. If $g>1$, then $\# X(K)<\infty$.

- Diophantine approximation, Vojta-Bombieri, 1991
- p-adic period map, Venkatesh, 2018

How to compute effectively $X(\mathbb{Q})$?

Hirowaka-Matsumura's question

A triangle is rational if its side lengths are rational

Hirowaka-Matsumura's question

A triangle is rational if its side lengths are rational
Does there exist a rational right triangle and a rational isosceles triangle that have the same area and the same perimeter?

Figure:

For $k, j, v \in \mathbb{Q}, 0<j, v<1, k>0$

For $k, j, v \in \mathbb{Q}, 0<j, v<1, k>0$

 Equate areas and perimeters \LongrightarrowFor $k, j, v \in \mathbb{Q}, 0<j, v<1, k>0$ Equate areas and perimeters \Longrightarrow

$$
\left\{\begin{array}{l}
k^{2} t\left(1-t^{2}\right)=2 v\left(1-v^{2}\right) \\
k+k t=v^{2}+2 v+1
\end{array}\right.
$$

For $k, j, v \in \mathbb{Q}, 0<j, v<1, k>0$ Equate areas and perimeters \Longrightarrow

$$
\left\{\begin{array}{l}
k^{2} t\left(1-t^{2}\right)=2 v\left(1-v^{2}\right) \\
k+k t=v^{2}+2 v+1
\end{array}\right.
$$

Let $x=v+1$

For $k, j, v \in \mathbb{Q}, 0<j, v<1, k>0$
Equate areas and perimeters \Longrightarrow

$$
\left\{\begin{array}{l}
k^{2} t\left(1-t^{2}\right)=2 v\left(1-v^{2}\right) \\
k+k t=v^{2}+2 v+1
\end{array}\right.
$$

Let $x=v+1 \Longrightarrow \exists x \in \mathbb{Q} \cap(0,1 / 2)$ s.t.

$$
2 x k^{2}+\left(-3 x^{3}-2 x^{2}+6 x-4\right) k+x^{5}=0
$$

Discriminant of the pln in k must be a rational square

$$
X: y^{2}=\left(-3 x^{5}-2 x^{2}-16 x-4\right)^{2}-4(2 x) x^{5}
$$

Discriminant of the pln in k must be a rational square

$$
X: y^{2}=\left(-3 x^{5}-2 x^{2}-16 x-4\right)^{2}-4(2 x) x^{5}
$$

simplyfying

$$
X: y^{2}=x^{6}+12 x^{5}-32 x^{4}+52 x^{2}-48 x+16
$$

Discriminant of the pln in k must be a rational square

$$
X: y^{2}=\left(-3 x^{5}-2 x^{2}-16 x-4\right)^{2}-4(2 x) x^{5}
$$

simplyfying

$$
X: y^{2}=x^{6}+12 x^{5}-32 x^{4}+52 x^{2}-48 x+16
$$

$g(X)=[(d-1) / 2]=2($ hyperelliptic curve $)$

Discriminant of the pln in k must be a rational square

$$
X: y^{2}=\left(-3 x^{5}-2 x^{2}-16 x-4\right)^{2}-4(2 x) x^{5}
$$

simplyfying

$$
X: y^{2}=x^{6}+12 x^{5}-32 x^{4}+52 x^{2}-48 x+16
$$

$g(X)=[(d-1) / 2]=2($ hyperelliptic curve $)$
Goal: determine $X(\mathbb{Q})$!

X algebraic curve over a field k.

X algebraic curve over a field k.

Reminder

The Jacobian variety of X is an abelian variety J s.t. for $k^{\prime} / k, \exists J\left(k^{\prime}\right) \simeq \operatorname{Pic}^{0}\left(X / k^{\prime}\right)$.

X algebraic curve over a field k.

Reminder

The Jacobian variety of X is an abelian variety J s.t. for $k^{\prime} / k, \exists J\left(k^{\prime}\right) \simeq \operatorname{Pic}^{0}\left(X / k^{\prime}\right)$.

- X embeds into J
- $J(\mathbb{Q})$ is finitely generated abelian group

X algebraic curve over a field k.

Reminder

The Jacobian variety of X is an abelian variety J s.t. for $k^{\prime} / k, \exists J\left(k^{\prime}\right) \simeq \operatorname{Pic}^{0}\left(X / k^{\prime}\right)$.

- X embeds into J
- $J(\mathbb{Q})$ is finitely generated abelian group

$$
J(\mathbb{Q})=J(\mathbb{Q})_{\text {tors }} \oplus \mathbb{Z}^{r}
$$

where $r k(J):=r$

Back to $X: y^{2}=x^{6}+12 x^{5}-32 x^{4}+52 x^{2}-48 x+16$

Back to $X: y^{2}=x^{6}+12 x^{5}-32 x^{4}+52 x^{2}-48 x+16$

Back to $X: y^{2}=x^{6}+12 x^{5}-32 x^{4}+52 x^{2}-48 x+16$
Magma Implementation of the 2-descend
$>R<x\rangle$:= PolynomialRing(RationalField());
$>X:=$ HyperellipticCurve $\left(x^{6}+12 * x^{5}-32 * x^{4}+52 *\right.$
$\left.x^{2}-48 * x+16\right)$;
$>J:=$ Jacobian (X);
$>$ RankBounds(J);
11

Back to $X: y^{2}=x^{6}+12 x^{5}-32 x^{4}+52 x^{2}-48 x+16$

Magma Implementation of the 2-descend

$>R<x\rangle$:= PolynomialRing(RationalField());
$>X:=$ HyperellipticCurve $\left(x^{6}+12 * x^{5}-32 * x^{4}+52 *\right.$ $\left.x^{2}-48 * x+16\right)$;
$>J:=\operatorname{Jacobian}(X)$;
$>$ RankBounds(J);
11
output of RankBounds is a lower bound on rank, followed by an upper bound on rank $\Longrightarrow r=1$.

Chabauty's Thm, '41
 X / \mathbb{Q} nice curve of genus $g \geq 2, r k(J)=r<g$ $\# X(\mathbb{Q})<\infty$.

Chabauty's Thm, '41

X / \mathbb{Q} nice curve of genus $g \geq 2, r k(J)=r<g \Longrightarrow$ $\# X(\mathbb{Q})<\infty$.
and the effective version

Coleman's Thm, '85

X / \mathbb{Q} nice curve s.t. $g \geq 2, r<g, p>2 g$ for p a prime of good reduction $\Longrightarrow \# X(\mathbb{Q}) \leq \# X\left(\mathbb{F}_{p}\right)+2 g-2$.

Back to $X: y^{2}=x^{6}+12 x^{5}-32 x^{4}+52 x^{2}-48 x+16$

Back to $X: y^{2}=x^{6}+12 x^{5}-32 x^{4}+52 x^{2}-48 x+16$

- X has good reduction at $p=5$

Back to $X: y^{2}=x^{6}+12 x^{5}-32 x^{4}+52 x^{2}-48 x+16$

- X has good reduction at $p=5$
- $\# X\left(\mathbb{F}_{5}\right)=\#\left\{\infty^{ \pm},(0, \pm 4),(1, \pm 1),(2, \pm 2)\right\}=8$

Back to $X: y^{2}=x^{6}+12 x^{5}-32 x^{4}+52 x^{2}-48 x+16$

- X has good reduction at $p=5$
- $\# X\left(\mathbb{F}_{5}\right)=\#\left\{\infty^{ \pm},(0, \pm 4),(1, \pm 1),(2, \pm 2)\right\}=8$

Coleman's thm $\Longrightarrow \# X(\mathbb{Q}) \leq 8+4-2=10$.

Back to $X: y^{2}=x^{6}+12 x^{5}-32 x^{4}+52 x^{2}-48 x+16$

- X has good reduction at $p=5$
- $\# X\left(\mathbb{F}_{5}\right)=\#\left\{\infty^{ \pm},(0, \pm 4),(1, \pm 1),(2, \pm 2)\right\}=8$

Coleman's thm $\Longrightarrow \# X(\mathbb{Q}) \leq 8+4-2=10$.
After a search
$X(\mathbb{Q})=\left\{\infty^{ \pm},(0, \pm 4),(1, \pm 1),(2, \pm 8),\left(12 / 11, \pm 868 / 11^{3}\right)\right\}$
$\Longrightarrow \# X(\mathbb{Q})=10$!

So the rational point $\left(12 / 11,868 / 11^{3}\right)$ gives us a ! pair of triangles

So the rational point $\left(12 / 11,868 / 11^{3}\right)$ gives us a ! pair of triangles

Hirakawa-Matsumura's Theorem

Up to similitude, there exists a unique pair of a rational right triangle and a rational isosceles triangle which have the same perimeter and the same area.

So the rational point $\left(12 / 11,868 / 11^{3}\right)$ gives us a ! pair of triangles

Hirakawa-Matsumura's Theorem

Up to similitude, there exists a unique pair of a rational right triangle and a rational isosceles triangle which have the same perimeter and the same area.
The unique pair consists of the right triangle with sides $(377,135,352)$ and isosceles triangle with sides $(366,366,132)$.

X / \mathbb{Q} hyperelliptic curve of genus g

X / \mathbb{Q} hyperelliptic curve of genus g

Theorem 1 (Stoll)
 If J_{X} has rank $r<g-3$, then

X / \mathbb{Q} hyperelliptic curve of genus g

Theorem 1 (Stoll)

If J_{X} has rank $r<g-3$, then

$$
\left\{\begin{array}{l}
\# X(\mathbb{Q}) \leq 8 r g+33(g-1)-1, \text { if } r \geq 1 \\
\# X(\mathbb{Q}) \leq 33(g-1)+1, \text { if } r=0
\end{array}\right.
$$

X / \mathbb{Q} hyperelliptic curve of genus g

Theorem 1 (Stoll)

If J_{X} has rank $r<g-3$, then

$$
\left\{\begin{array}{l}
\# X(\mathbb{Q}) \leq 8 r g+33(g-1)-1, \text { if } r \geq 1 \\
\# X(\mathbb{Q}) \leq 33(g-1)+1, \text { if } r=0
\end{array}\right.
$$

Theorem 2 (Katz,Rabinoff, Zureick-Brown)

 If X / \mathbb{Q} is a nice curve with $r \leq g-3 \Longrightarrow$ $\# X(\mathbb{Q}) \leq 84 g^{2}-98 g+28$.
Not always so lucky!

Consider

$$
C: y^{2}=x^{5}-2 x^{3}+x+\frac{1}{4}
$$

nice $g=2$ curve,

Not always so lucky!

Consider

$$
C: y^{2}=x^{5}-2 x^{3}+x+\frac{1}{4}
$$

nice $g=2$ curve, www.Imfdb.org/Genus2Curve/Q/971/a/971/1

Not always so lucky!

Consider

$$
C: y^{2}=x^{5}-2 x^{3}+x+\frac{1}{4}
$$

nice $g=2$ curve, www.Imfdb.org/Genus2Curve/Q/971/a/971/1

- $C(\mathbb{Q})_{\text {known }}=\left\{\infty,\left(0, \pm \frac{1}{2}\right),\left(\mp 1, \pm \frac{1}{2}\right)\right\}$

Not always so lucky!

Consider

$$
C: y^{2}=x^{5}-2 x^{3}+x+\frac{1}{4}
$$

nice $g=2$ curve, www.Imfdb.org/Genus2Curve/Q/971/a/971/1

- $C(\mathbb{Q})_{\text {known }}=\left\{\infty,\left(0, \pm \frac{1}{2}\right),\left(\mp 1, \pm \frac{1}{2}\right)\right\}$
- J is simple and $r k(J)=1 \Longrightarrow J(\mathbb{Q}) \simeq \mathbb{Z}$

Not always so lucky!

Consider

$$
C: y^{2}=x^{5}-2 x^{3}+x+\frac{1}{4}
$$

nice $g=2$ curve, www.Imfdb.org/Genus2Curve/Q/971/a/971/1

- $C(\mathbb{Q})_{\text {known }}=\left\{\infty,\left(0, \pm \frac{1}{2}\right),\left(\mp 1, \pm \frac{1}{2}\right)\right\}$
- J is simple and $r k(J)=1 \Longrightarrow J(\mathbb{Q}) \simeq \mathbb{Z}$
- C has good reduction at $p=3$ and $\# C\left(\mathbb{F}_{3}\right)=7$

Stoll's Refinement of Chabauty bound
 If p is a prime of good reduction s.t. $p>2$

Stoll's Refinement of Chabauty bound

If p is a prime of good reduction s.t. $p>2$

$$
\# X(\mathbb{Q}) \leq \# X\left(\mathbb{F}_{p}\right)+2 r+[2 r /(p-2)]
$$

Stoll's Refinement of Chabauty bound

If p is a prime of good reduction s.t. $p>2$

$$
\# X(\mathbb{Q}) \leq \# X\left(\mathbb{F}_{p}\right)+2 r+[2 r /(p-2)]
$$

Katz and Zureick-Brown extended Stoll's result to the case of bad reduction.

Applying Stoll's refinement to C for $p=3$

Applying Stoll's refinement to C for $p=3$

$$
\# C(\mathbb{Q}) \leq \# C\left(\mathbb{F}_{3}\right)+2 r+[2 r /(p-2)]=11
$$

Applying Stoll's refinement to C for $p=3$

$$
\# C(\mathbb{Q}) \leq \# C\left(\mathbb{F}_{3}\right)+2 r+[2 r /(p-2)]=11
$$

We suspect we have all of the \mathbb{Q}-points and we would like to prove this!

Chabauty-Coleman: Intuition

- We want $X \hookrightarrow J$ and fix $\infty \in X(\mathbb{Q})$

Chabauty-Coleman: Intuition

- We want $X \hookrightarrow J$ and fix $\infty \in X(\mathbb{Q})$
- define \mathcal{I} functionals on $J\left(\mathbb{Q}_{p}\right)$

Chabauty-Coleman: Intuition

- We want $X \hookrightarrow J$ and fix $\infty \in X(\mathbb{Q})$
- define \mathcal{I} functionals on $J\left(\mathbb{Q}_{p}\right)$
- $\left.\mathcal{I}\right|_{X(\mathbb{Q})}=0$ but $\mathcal{I} \neq 0$, with fin. many zeros

Chabauty-Coleman: Intuition

- We want $X \hookrightarrow J$ and fix $\infty \in X(\mathbb{Q})$
- define \mathcal{I} functionals on $J\left(\mathbb{Q}_{p}\right)$
- $\left.\mathcal{I}\right|_{X(\mathbb{Q})}=0$ but $\mathcal{I} \neq 0$, with fin. many zeros
- $\int p$-adic integral
- regular 1 form ω s.t. $\forall P \in X(\mathbb{Q}), \quad \int_{\infty}^{P} \omega=0$

Thus we get a functional

$$
\mathfrak{I}: X\left(\mathbb{Q}_{p}\right) \rightarrow \mathbb{Q}_{p}, \quad Q \mapsto \int_{\infty}^{Q} \omega
$$

Thus we get a functional

$$
\mathfrak{I}: X\left(\mathbb{Q}_{p}\right) \rightarrow \mathbb{Q}_{p}, \quad Q \mapsto \int_{\infty}^{Q} \omega
$$

s.t. $X(\mathbb{Q}) \subset$ vanishing of \mathfrak{I}.

Thus we get a functional

$$
\mathfrak{I}: X\left(\mathbb{Q}_{p}\right) \rightarrow \mathbb{Q}_{p}, \quad Q \mapsto \int_{\infty}^{Q} \omega
$$

s.t. $X(\mathbb{Q}) \subset$ vanishing of \mathfrak{I}.
$X(\mathbb{Q})$ is contained in a finite, computable set

Thus we get a functional

$$
\mathfrak{I}: X\left(\mathbb{Q}_{p}\right) \rightarrow \mathbb{Q}_{p}, \quad Q \mapsto \int_{\infty}^{Q} \omega
$$

s.t. $X(\mathbb{Q}) \subset$ vanishing of \mathfrak{I}.
$X(\mathbb{Q})$ is contained in a finite, computable set compute $X(\mathbb{Q})$ plus something hopefully small!

Coleman's Effective Chabauty

Reminder

- $\omega \in \Omega^{1}(k)$ is regular is $\forall P \in X(\bar{k}), \quad \nu_{P}(\omega)>0$
- ω is of 2 nd kind if it has residue zero $\forall P \in X(\bar{k})$

Coleman's Effective Chabauty

Reminder

- $\omega \in \Omega^{1}(k)$ is regular is $\forall P \in X(\bar{k}), \nu_{P}(\omega)>0$
- ω is of 2 nd kind if it has residue zero $\forall P \in X(\bar{k})$

Reminder

$X^{\text {an }}$ is the rigid analytic space over \mathbb{Q}_{p} associated to X / \mathbb{Q}_{p}. There is a specialization map from $X^{\text {an }} \rightarrow X$ $\bmod p$. The fibers of this map are called residue disks.

Theorem 3 (Coleman Integral)

X / \mathbb{Q}_{p} nice curve. The p-adit integral $\int_{P}^{Q} \omega \in \overline{\mathbb{Q}}_{p}$ defined $\forall P, Q \in X\left(\overline{\mathbb{Q}}_{p}\right), \forall \omega \in H^{0}\left(X, \Omega^{1}\right)$ is st.

Theorem 3 (Coleman Integral)

X / \mathbb{Q}_{p} nice curve. The p-adic integral $\int_{P}^{Q} \omega \in \overline{\mathbb{Q}}_{p}$ defined $\forall P, Q \in X\left(\overline{\mathbb{Q}}_{p}\right), \forall \omega \in H^{0}\left(X, \Omega^{1}\right)$ is s.t.

- $\overline{\mathbb{Q}}_{p}$-linear in ω and additive

Theorem 3 (Coleman Integral)

X / \mathbb{Q}_{p} nice curve. The p-adic integral $\int_{P}^{Q} \omega \in \overline{\mathbb{Q}}_{p}$ defined $\forall P, Q \in X\left(\overline{\mathbb{Q}}_{p}\right), \forall \omega \in H^{0}\left(X, \Omega^{1}\right)$ is st.

- $\overline{\mathbb{Q}}_{p}$-linear in ω and additive
- $\int_{P}^{Q} \omega+\int_{P^{\prime}}^{Q^{\prime}} \omega=\int_{P}^{Q^{\prime}} \omega+\int_{P^{\prime}}^{Q} \omega$.

Theorem 3 (Coleman Integral)

X / \mathbb{Q}_{p} nice curve. The p-adic integral $\int_{P}^{Q} \omega \in \overline{\mathbb{Q}}_{p}$ defined $\forall P, Q \in X\left(\overline{\mathbb{Q}}_{p}\right), \forall \omega \in H^{0}\left(X, \Omega^{1}\right)$ is s.t.

- $\overline{\mathbb{Q}}_{p}$-linear in ω and additive
- $\int_{P}^{Q} \omega+\int_{P^{\prime}}^{Q^{\prime}} \omega=\int_{P}^{Q^{\prime}} \omega+\int_{P^{\prime}}^{Q} \omega$. Thus for $(D)=\sum_{j=1}^{n}\left(\left(Q_{j}\right)-\left(P_{j}\right)\right) \in \operatorname{Div}_{X}^{0}\left(\mathbb{Q}_{p}\right)$

Theorem 3 (Coleman Integral)

X / \mathbb{Q}_{p} nice curve. The p-adic integral $\int_{P}^{Q} \omega \in \overline{\mathbb{Q}}_{p}$ defined $\forall P, Q \in X\left(\overline{\mathbb{Q}}_{p}\right), \forall \omega \in H^{0}\left(X, \Omega^{1}\right)$ is s.t.

- $\overline{\mathbb{Q}}_{p}$-linear in ω and additive
- $\int_{P}^{Q} \omega+\int_{P^{\prime}}^{Q^{\prime}} \omega=\int_{P}^{Q^{\prime}} \omega+\int_{P^{\prime}}^{Q} \omega$. Thus for $(D)=\sum_{j=1}^{n}\left(\left(Q_{j}\right)-\left(P_{j}\right)\right) \in \operatorname{Div}_{X}^{0}\left(\mathbb{Q}_{p}\right)$ we define

$$
\int_{D} \omega=\sum_{j=1}^{n} \int_{P_{j}}^{Q_{j}} \omega
$$

Theorem 3 (Coleman Integral)

X / \mathbb{Q}_{p} nice curve. The p-adic integral $\int_{P}^{Q} \omega \in \overline{\mathbb{Q}}_{p}$ defined $\forall P, Q \in X\left(\mathbb{Q}_{p}\right), \forall \omega \in H^{0}\left(X, \Omega^{1}\right)$ is s.t.

- $\overline{\mathbb{Q}}_{p}$-linear in ω and additive
- $\int_{P}^{Q} \omega+\int_{P^{\prime}}^{Q^{\prime}} \omega=\int_{P}^{Q^{\prime}} \omega+\int_{P^{\prime}}^{Q} \omega$. Thus for $(D)=\sum_{j=1}^{n}\left(\left(Q_{j}\right)-\left(P_{j}\right)\right) \in \operatorname{Div}_{X}^{0}\left(\mathbb{Q}_{p}\right)$ we define

$$
\int_{D} \omega=\sum_{j=1}^{n} \int_{P_{j}}^{Q_{j}} \omega
$$

- D principal $\Longrightarrow \int_{D} \omega=0$

Coleman Integral

- Fix $P_{0} \in X\left(\overline{\mathbb{Q}}_{p}\right)$ and $\tilde{P} \in X\left(\mathbb{F}_{p}\right)$.

Coleman Integral

- Fix $P_{0} \in X\left(\mathbb{Q}_{p}\right)$ and $\tilde{P} \in X\left(\mathbb{F}_{p}\right)$.

For $0 \neq \omega \in H^{0}\left(X_{\mathbb{Q}_{p}}, \Omega^{1}\right)$

$$
\#\left\{P \in X\left(\overline{\mathbb{Q}}_{p}\right) \mid \operatorname{red}(P)=\tilde{P}, \quad \int_{P_{0}}^{P} \omega=0\right\}<\infty
$$

Coleman Integral

- Fix $P_{0} \in X\left(\mathbb{Q}_{p}\right)$ and $\tilde{P} \in X\left(\mathbb{F}_{p}\right)$.

For $0 \neq \omega \in H^{0}\left(X_{\mathbb{Q}_{p}}, \Omega^{1}\right)$

$$
\#\left\{P \in X\left(\overline{\mathbb{Q}}_{p}\right) \mid \operatorname{red}(P)=\tilde{P}, \quad \int_{P_{0}}^{P} \omega=0\right\}<\infty
$$

- (not trivial!)

$$
\int_{P}^{P} \omega=0
$$

Corollary 1

Consider $b \in X\left(\mathbb{Q}_{p}\right)$ and $i: X \rightarrow J$ the Abel-Jacobi embedding.

Corollary 1

Consider $b \in X\left(\mathbb{Q}_{p}\right)$ and $i: X \rightarrow J$ the Abel-Jacobi embedding. Then

$$
\exists J\left(\mathbb{Q}_{p}\right) \times H^{0}\left(X_{\mathbb{Q}_{p}}, \Omega^{1}\right) \rightarrow \mathbb{Q}_{p}, \quad(Q, \omega) \mapsto\langle Q, \omega\rangle
$$

Corollary 1

Consider $b \in X\left(\mathbb{Q}_{p}\right)$ and $i: X \rightarrow J$ the Abel-Jacobi embedding. Then

$$
\exists J\left(\mathbb{Q}_{p}\right) \times H^{0}\left(X_{\mathbb{Q}_{p}}, \Omega^{1}\right) \rightarrow \mathbb{Q}_{p}, \quad(Q, \omega) \mapsto\langle Q, \omega\rangle
$$

additive in Q, linear in ω s.t.

$$
\langle[D], \omega\rangle=\int_{D} \omega
$$

Definition
 $A J_{b}(P):=\langle i(P), \omega\rangle=\int_{b}^{P} \omega$

Definition
 $A J_{b}(P):=\langle i(P), \omega\rangle=\int_{b}^{P} \omega$

Rmk: $P \in J\left(\mathbb{Q}_{p}\right)$ of finite order $\Longrightarrow \forall \omega,\langle P, \omega\rangle=0$.

Definition

$$
A J_{b}(P):=\langle i(P), \omega\rangle=\int_{b}^{P} \omega
$$

Rmk: $P \in J\left(\mathbb{Q}_{P}\right)$ of finite order $\Longrightarrow \forall \omega,\langle P, \omega\rangle=0$.
We define

$$
A:=\left\{\omega \in H^{0}\left(X, \Omega^{1}\right) \mid \forall P \in J(\mathbb{Q}),\langle P, \omega\rangle=0\right\}
$$

as the subspace of annihilating differentials.
$i: X \hookrightarrow J$ induces $H^{0}\left(J_{\mathbb{Q}_{p}}, \Omega^{1}\right) \simeq H^{0}\left(X_{\mathbb{Q}_{p}}, \Omega^{1}\right)$
$i: X \hookrightarrow J$ induces $H^{0}\left(J_{\mathbb{Q}_{p}}, \Omega^{1}\right) \simeq H^{0}\left(X_{\mathbb{Q}_{p}}, \Omega^{1}\right)$ similarly

$$
J\left(\mathbb{Q}_{p}\right) \times H^{0}\left(J\left(\mathbb{Q}_{p}\right), \Omega^{1}\right) \rightarrow \mathbb{Q}_{p},\left(Q, \omega_{J}\right) \mapsto \int_{0}^{Q} \omega_{J}
$$

$i: X \hookrightarrow J$ induces $H^{0}\left(J_{\mathbb{Q}_{p}}, \Omega^{1}\right) \simeq H^{0}\left(X_{\mathbb{Q}_{p}}, \Omega^{1}\right)$ similarly

$$
J\left(\mathbb{Q}_{p}\right) \times H^{0}\left(J\left(\mathbb{Q}_{p}\right), \Omega^{1}\right) \rightarrow \mathbb{Q}_{p},\left(Q, \omega_{J}\right) \mapsto \int_{0}^{Q} \omega_{J}
$$

which induces the homomorphism

$$
\log : J\left(\mathbb{Q}_{p}\right) \rightarrow H^{0}\left(J_{\mathbb{Q}_{p}}, \Omega^{1}\right)^{*}
$$

Thus we get

Corollary 2
 X / \mathbb{Q} be a nice curve of genus g s.t. $r<g \Longrightarrow$ $\# X(\mathbb{Q})<\infty$.

Corollary 2

X / \mathbb{Q} be a nice curve of genus g s.t. $r<g \Longrightarrow$ $\# X(\mathbb{Q})<\infty$.

Computing rational points via Coleman-Chabauty method \Longleftrightarrow computing the finite set

$$
X\left(\mathbb{Q}_{p}\right)_{1}:=\left\{z \in X\left(\mathbb{Q}_{p}\right) \mid \int_{b}^{z} \omega=0, \text { for } \omega \in A\right\}
$$

Corollary 2

X / \mathbb{Q} be a nice curve of genus g s.t. $r<g \Longrightarrow$ $\# X(\mathbb{Q})<\infty$.

Computing rational points via Coleman-Chabauty method \Longleftrightarrow computing the finite set

$$
X\left(\mathbb{Q}_{p}\right)_{1}:=\left\{z \in X\left(\mathbb{Q}_{p}\right) \mid \int_{b}^{z} \omega=0, \text { for } \omega \in A\right\}
$$

By construction $X(\mathbb{Q}) \subseteq X\left(\mathbb{Q}_{p}\right)_{1}$

Back to

$$
C: y^{2}=x^{5}-2 x^{3}+x+\frac{1}{4}
$$

Back to

$$
C: y^{2}=x^{5}-2 x^{3}+x+\frac{1}{4}
$$

- for $p=3$ construct $\eta \in A$

Back to

$$
C: y^{2}=x^{5}-2 x^{3}+x+\frac{1}{4}
$$

- for $p=3$ construct $\eta \in A$
- $\operatorname{Span}\left\{\omega_{i}=\frac{x^{i} d x}{2 y}\right\}_{i=0,1}=H^{0}\left(C_{\mathbb{Q}_{3}}, \Omega^{1}\right)$

Back to

$$
C: y^{2}=x^{5}-2 x^{3}+x+\frac{1}{4}
$$

- for $p=3$ construct $\eta \in A$
- $\operatorname{Span}\left\{\omega_{i}=\frac{x^{i} d x}{2 y}\right\}_{i=0,1}=H^{0}\left(C_{\mathbb{Q}_{3}}, \Omega^{1}\right)$
- η is a \mathbb{Q}_{3}-linear combination of ω_{0}, ω_{1}

Back to

$$
C: y^{2}=x^{5}-2 x^{3}+x+\frac{1}{4}
$$

- for $p=3$ construct $\eta \in A$
- $\operatorname{Span}\left\{\omega_{i}=\frac{x^{i} d x}{2 y}\right\}_{i=0,1}=H^{0}\left(C_{\mathbb{Q}_{3}}, \Omega^{1}\right)$
- η is a \mathbb{Q}_{3}-linear combination of ω_{0}, ω_{1}
- compute

$$
\alpha_{i}=\int_{(0,1 / 2)}^{(-1,-1 / 2)} \omega_{i}
$$

Using SageMath we get

$$
\begin{aligned}
& \text { - } \alpha_{0}=3+3^{2}+3^{4}+3^{5}+2 \cdot 3^{6}+2 \cdot 3^{7}+2 \cdot 3^{8}+3^{10}+O\left(3^{11}\right) \\
& \text { - } \alpha_{1}=2+2 \cdot 3+2 \cdot 3^{3}+3^{4}+3^{6}+2 \cdot 3^{8}+2 \cdot 3^{9}+O\left(3^{10}\right)
\end{aligned}
$$

Using SageMath we get

$$
\begin{aligned}
& \text { - } \alpha_{0}=3+3^{2}+3^{4}+3^{5}+2 \cdot 3^{6}+2 \cdot 3^{7}+2 \cdot 3^{8}+3^{10}+O\left(3^{11}\right) \\
& \text { - } \alpha_{1}=2+2 \cdot 3+2 \cdot 3^{3}+3^{4}+3^{6}+2 \cdot 3^{8}+2 \cdot 3^{9}+O\left(3^{10}\right)
\end{aligned}
$$

$$
\int_{(0,1 / 2)}^{(-1,-1 / 2)} \alpha_{1} \omega_{0}-\alpha_{0} \omega_{1}=0
$$

Using SageMath we get

$$
\begin{aligned}
& \text { - } \alpha_{0}=3+3^{2}+3^{4}+3^{5}+2 \cdot 3^{6}+2 \cdot 3^{7}+2 \cdot 3^{8}+3^{10}+O\left(3^{11}\right) \\
& \text { - } \alpha_{1}=2+2 \cdot 3+2 \cdot 3^{3}+3^{4}+3^{6}+2 \cdot 3^{8}+2 \cdot 3^{9}+O\left(3^{10}\right)
\end{aligned}
$$

$$
\int_{(0,1 / 2)}^{(-1,-1 / 2)} \alpha_{1} \omega_{0}-\alpha_{0} \omega_{1}=0
$$

so we take

$$
\eta=\alpha_{1} \omega_{0}-\alpha_{0} \omega_{1} \in A
$$

We want to compute $X\left(\mathbb{Q}_{3}\right)_{1}$.

We want to compute $X\left(\mathbb{Q}_{3}\right)_{1}$.
We need to compute the "indefinite" Coleman integrals

$$
\left\{\int_{(0,1 / 2)}^{P_{t}} \eta\right\}_{t}
$$

where t runs over all residue disks.

We want to compute $X\left(\mathbb{Q}_{3}\right)_{1}$.
We need to compute the "indefinite" Coleman integrals

$$
\left\{\int_{(0,1 / 2)}^{P_{t}} \eta\right\}_{t}
$$

where t runs over all residue disks.
Then we solve $\forall z \in X\left(\mathbb{Q}_{3}\right)$ s.t.

$$
\int_{(0,1 / 2)}^{z} \eta=0
$$

P_{0} lift of a \mathbb{F}_{3}-point in the same residue disk at P_{t}.

P_{0} lift of a \mathbb{F}_{3}-point in the same residue disk at P_{t}. Then

$$
\int_{(0,1 / 2)}^{P_{t}} \eta=\int_{(0,1 / 2)}^{P_{0}} \eta+\int_{P_{0}}^{P_{t}} \eta
$$

where the first integral is a 3 -adic constant and the second one is computed via power series.
P_{0} lift of a \mathbb{F}_{3}-point in the same residue disk at P_{t}. Then

$$
\int_{(0,1 / 2)}^{P_{t}} \eta=\int_{(0,1 / 2)}^{P_{0}} \eta+\int_{P_{0}}^{P_{t}} \eta
$$

where the first integral is a 3 -adic constant and the second one is computed via power series.
So we need to compute Coleman integrals between points not in the same residue disk!

Reminder

A wide open subspace of $X^{a n}$ is the complement of the union of a finite collection of disjoint closed disks of radius $\lambda_{i}<1$.

Reminder

A wide open subspace of $X^{a n}$ is the complement of the union of a finite collection of disjoint closed disks of radius $\lambda_{i}<1$.

Consider

- $a, b \in \overline{\mathbb{Q}}_{p}$
- $P, Q, R \in U\left(\overline{\mathbb{Q}}_{p}\right)$
- $\xi, \eta \in \Omega^{1}(U)$ for U wide open subspace of $X^{\text {an }}$

Theorem 4 (More Coleman Integration)

- linearity:

$$
\int_{P}^{Q}(a \eta+b \xi)=a \int_{P}^{Q} \eta+b \int_{P}^{Q} \xi
$$

Theorem 4 (More Coleman Integration)

- linearity:

$$
\int_{P}^{Q}(a \eta+b \xi)=a \int_{P}^{Q} \eta+b \int_{P}^{Q} \xi
$$

- additivity in endpoints:

$$
\int_{P}^{Q} \eta=\int_{P}^{R} \eta+\int_{R}^{Q} \eta
$$

Theorem 4 (More Coleman Integration)

- linearity:

$$
\int_{P}^{Q}(a \eta+b \xi)=a \int_{P}^{Q} \eta+b \int_{P}^{Q} \xi
$$

- additivity in endpoints:

$$
\int_{P}^{Q} \eta=\int_{P}^{R} \eta+\int_{R}^{Q} \eta
$$

- for ω defined over \mathbb{Q}_{p}, we have $\int_{P}^{Q} \omega \in \mathbb{Q}_{p}$

More Coleman Integration

$U^{\prime} \subseteq X$ wide, $\varphi: U \rightarrow U^{\prime}$ rigid analytic map, f rigid on U

More Coleman Integration

$U^{\prime} \subseteq X$ wide, $\varphi: U \rightarrow U^{\prime}$ rigid analytic map, f rigid on U

- Fundamental Thm of Calculus:

$$
\int_{P}^{Q} f=f(Q)-f(P)
$$

More Coleman Integration

$U^{\prime} \subseteq X$ wide, $\varphi: U \rightarrow U^{\prime}$ rigid analytic map, f rigid on U

- Fundamental Thm of Calculus:

$$
\int_{P}^{Q} f=f(Q)-f(P)
$$

- change of variables: for $\omega^{\prime} \in \Omega^{1}\left(U^{\prime}\right)$,

$$
\int_{P}^{Q} \varphi^{*} \omega^{\prime}=\int_{\varphi(P)}^{\varphi(Q)} \omega^{\prime}
$$

Let $P, Q \in U\left(\mathbb{Q}_{p}\right)$ and consider X and hyperelliptic

 curve.Let $P, Q \in U\left(\mathbb{Q}_{p}\right)$ and consider X and hyperelliptic curve.

Goal

Integrate

$$
\int_{P}^{Q} \omega
$$

for $\omega \in \Omega^{1}$ of 2 nd kind!

Let $P, Q \in U\left(\mathbb{Q}_{p}\right)$ and consider X and hyperelliptic curve.

Goal

Integrate

$$
\int_{P}^{Q} \omega
$$

for $\omega \in \Omega^{1}$ of 2 nd kind!
Using p-adic heights it is possible to integrate also forms of the 3 rd kind.

Sketch of Explicit Coleman Integration

- φ lift of p-Frobenius from the special fiber

Sketch of Explicit Coleman Integration

- φ lift of p-Frobenius from the special fiber
- compute a basis $\left\{\omega_{i} \in \Omega^{1} \mid \omega_{i}\right.$ 2nd kind $\}$

Sketch of Explicit Coleman Integration

- φ lift of p-Frobenius from the special fiber
- compute a basis $\left\{\omega_{i} \in \Omega^{1} \mid \omega_{i}\right.$ 2nd kind $\}$
- compute $\varphi^{*} \omega_{i}$ via Kedlaya's Algorithm

Sketch of Explicit Coleman Integration

- φ lift of p-Frobenius from the special fiber
- compute a basis $\left\{\omega_{i} \in \Omega^{1} \mid \omega_{i}\right.$ 2nd kind $\}$
- compute $\varphi^{*} \omega_{i}$ via Kedlaya's Algorithm
- use Coleman integration to relate $\int_{P}^{Q} \varphi^{*} \omega_{i}$ to $\int_{P}^{Q} \omega_{i}$

Sketch of Explicit Coleman Integration

- φ lift of p-Frobenius from the special fiber
- compute a basis $\left\{\omega_{i} \in \Omega^{1} \mid \omega_{i}\right.$ 2nd kind $\}$
- compute $\varphi^{*} \omega_{i}$ via Kedlaya's Algorithm
- use Coleman integration to relate $\int_{P}^{Q} \varphi^{*} \omega_{i}$ to $\int_{P}^{Q} \omega_{i}$
- solve $\int_{P}^{Q} \omega_{i}$

Back for the last time to

$$
C: y^{2}=x^{5}-2 x^{3}+x+\frac{1}{4}
$$

Back for the last time to

$$
C: y^{2}=x^{5}-2 x^{3}+x+\frac{1}{4}
$$

To resume:

- $C(\mathbb{Q})_{\text {known }}=\left\{\infty,\left(0, \pm \frac{1}{2}\right),\left(\mp 1, \pm \frac{1}{2}\right)\right\}$
- $C\left(\mathbb{F}_{3}\right)=\{\infty,(0, \pm 1),(1, \pm 1),(2, \pm 1)\}$

$$
\int_{(0,1 / 2)}^{P_{t}} \eta=\int_{(0,1 / 2)}^{P_{0}} \eta+\int_{P_{0}}^{P_{t}} \eta
$$

Compute the power series expansions of the "indefinite" Coleman integrals $\left\{\int_{(1 / 2)}^{P_{t}}\right\}$.

Compute the power series expansions of the "indefinite" Coleman integrals $\left\{\int_{(1 / 2)}^{P_{t}}\right\}$.

- every residue disk contains a rational pt $\Longrightarrow P_{0}$ rational

Compute the power series expansions of the "indefinite" Coleman integrals $\left\{\int_{(1 / 2)}^{P_{t}}\right\}$.

- every residue disk contains a rational pt $\Longrightarrow P_{0}$ rational
$0 \Longrightarrow$

$$
\int_{(0,1 / 2)}^{P_{0}} \eta=0
$$

Compute the power series expansions of the "indefinite" Coleman integrals $\left\{\int_{(1 / 2)}^{P_{t}}\right\}$.

- every residue disk contains a rational pt $\Longrightarrow P_{0}$ rational
$0 \Longrightarrow$

$$
\int_{(0,1 / 2)}^{P_{0}} \eta=0
$$

- now the computation is purely local

We carry out the computation in the residue disks of

$$
\infty,\left(0, \frac{1}{2}\right),\left(\pm 1, \frac{1}{2}\right)
$$

We carry out the computation in the residue disks of

$$
\infty,\left(0, \frac{1}{2}\right),\left(\pm 1, \frac{1}{2}\right)
$$

Each residue disk has a simple zero at the rational point and no others \qquad

We carry out the computation in the residue disks of

$$
\infty,\left(0, \frac{1}{2}\right),\left(\pm 1, \frac{1}{2}\right)
$$

Each residue disk has a simple zero at the rational point and no others

$$
C\left(\mathbb{Q}_{3}\right)_{1}=C(\mathbb{Q})_{\text {known }}=C(\mathbb{Q})
$$

A Couple of Perspectives

- Quadratic Chabauty
- Computations and Algorithms for Q.C.

Essential Bibliography

Notes from Arizona Winter School 2020:

- Jennifer S. Balakrishnan, J. Steffen Müller,
"Computational Tools for Quadratic Chabauty"
- David Zureick-Brown "Abelian Chabauty"

Thanks for the attention! ${ }^{1}$

${ }^{1}$ I deeply thank Dr. Yelena Yuditsky for the precious help with the drawings.

