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Introduction

nice curve = smooth, projective, geom. integral
a curve X is classified according to its genus g

#X (Q) is related to g
if g = 0, 1 then #X (Q) can be infinite
what if g > 1?
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g = 0 g = 1

#X(Q) ≤ ∞

. . .

g > 1

#X(Q) = ?

Figure:
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Non-effective results

Falting’s theorem, 1983
Let K be a number field and X a nice curve over K of
genus g . If g > 1, then #X (K ) <∞.

Diophantine approximation, Vojta-Bombieri, 1991
p-adic period map, Venkatesh, 2018

How to compute effectively X (Q)?
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Hirowaka-Matsumura’s question

A triangle is rational if its side lengths are rational

Does there exist a rational right triangle and a rational
isosceles triangle that have the same area and the same
perimeter?
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2v

(1 + v2)

(1− v2)

2kj

k(1− j2)

k(1 + j2)

Figure:
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For k , j , v ∈ Q, 0 < j , v < 1, k > 0

Equate areas and perimeters =⇒
k2t(1− t2) = 2v(1− v 2)
k + kt = v 2 + 2v + 1

Let x = v + 1 =⇒ ∃x ∈ Q ∩ (0, 1/2) s.t.

2xk2 + (−3x 3 − 2x 2 + 6x − 4)k + x 5 = 0
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Discriminant of the pln in k must be a rational square

X : y 2 = (−3x 5 − 2x 2 − 16x − 4)2 − 4(2x)x 5

simplyfying

X : y 2 = x 6 + 12x 5 − 32x 4 + 52x 2 − 48x + 16

g(X ) = [(d − 1)/2] = 2 ( hyperelliptic curve)

Goal: determine X (Q)!
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X algebraic curve over a field k .

Reminder
The Jacobian variety of X is an abelian variety J s.t. for
k ′/k , ∃ J(k ′) ' Pic0(X/k ′).

X embeds into J
J(Q) is finitely generated abelian group =⇒
J(Q) = J(Q)tors ⊕ Zr

where rk(J) := r
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Back to X : y 2 = x 6 + 12x 5 − 32x 4 + 52x 2 − 48x + 16

Magma Implementation of the 2-descend
> R < x >:= PolynomialRing(RationalField());
> X := HyperellipticCurve(x 6 + 12 ∗ x 5 − 32 ∗ x 4 + 52 ∗
x 2 − 48 ∗ x + 16);
> J := Jacobian(X );
> RankBounds(J);
1 1

output of RankBounds is a lower bound on rank,
followed by an upper bound on rank =⇒ r = 1.
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Chabauty’s Thm, ’41
X/Q nice curve of genus g ≥ 2, rk(J) = r < g =⇒
#X (Q) <∞.

and the effective version
Coleman’s Thm, ’85
X/Q nice curve s.t. g ≥ 2, r < g , p > 2g for p a prime
of good reduction =⇒ #X (Q) ≤ #X (Fp) + 2g − 2.
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Back to X : y 2 = x 6 + 12x 5 − 32x 4 + 52x 2 − 48x + 16

X has good reduction at p = 5
#X (F5) = #{∞±, (0,±4), (1,±1), (2,±2)} = 8

Coleman’s thm =⇒ #X (Q) ≤ 8 + 4− 2 = 10.
After a search

X (Q) = {∞±, (0,±4), (1,±1), (2,±8), (12/11,±868/113)}

=⇒ #X (Q) = 10!
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So the rational point (12/11, 868/113) gives us a ! pair
of triangles

Hirakawa–Matsumura’s Theorem
Up to similitude, there exists a unique pair of a rational
right triangle and a rational isosceles triangle which have
the same perimeter and the same area.
The unique pair consists of the right triangle with sides
(377, 135, 352) and isosceles triangle with sides
(366, 366, 132).
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X/Q hyperelliptic curve of genus g

Theorem 1 (Stoll)
If JX has rank r < g − 3, then

#X (Q) ≤ 8rg + 33(g − 1)− 1, if r ≥ 1
#X (Q) ≤ 33(g − 1) + 1, if r = 0.

Theorem 2 (Katz,Rabinoff, Zureick-Brown)
If X/Q is a nice curve with r ≤ g − 3 =⇒
#X (Q) ≤ 84g2 − 98g + 28.
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Not always so lucky!

Consider
C : y 2 = x 5 − 2x 3 + x + 1

4
nice g = 2 curve,

www .lmfdb.org/Genus2Curve/Q/971/a/971/1
C(Q)known = {∞, (0,±1

2), (∓1,±1
2)}

J is simple and rk(J) = 1 =⇒ J(Q) ' Z
C has good reduction at p = 3 and #C(F3) = 7
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Stoll’s Refinement of Chabauty bound
If p is a prime of good reduction s.t. p > 2 =⇒

#X (Q) ≤ #X (Fp) + 2r + [2r/(p − 2)]

Katz and Zureick-Brown extended Stoll’s result to the
case of bad reduction.

Francesco Maria Saettone Towards a computational approach for Chabauty method April 8, 2020 17 / 43



Stoll’s Refinement of Chabauty bound
If p is a prime of good reduction s.t. p > 2 =⇒

#X (Q) ≤ #X (Fp) + 2r + [2r/(p − 2)]

Katz and Zureick-Brown extended Stoll’s result to the
case of bad reduction.

Francesco Maria Saettone Towards a computational approach for Chabauty method April 8, 2020 17 / 43



Stoll’s Refinement of Chabauty bound
If p is a prime of good reduction s.t. p > 2 =⇒

#X (Q) ≤ #X (Fp) + 2r + [2r/(p − 2)]

Katz and Zureick-Brown extended Stoll’s result to the
case of bad reduction.

Francesco Maria Saettone Towards a computational approach for Chabauty method April 8, 2020 17 / 43



Applying Stoll’s refinement to C for p = 3

#C(Q) ≤ #C(F3) + 2r + [2r/(p − 2)] = 11

We suspect we have all of the Q-points and we would
like to prove this!
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Chabauty-Coleman: Intuition

We want X ↪→ J and fix ∞ ∈ X (Q)

define I functionals on J(Qp)
I|X (Q) = 0 but I 6= 0, with fin. many zeros∫ p-adic integral
regular 1 form ω s.t. ∀P ∈ X (Q), ∫ P

∞ ω = 0
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Thus we get a functional

I : X (Qp)→ Qp, Q 7→
∫ Q

∞
ω

s.t. X (Q) ⊂ vanishing of I.

X (Q) is contained in a finite, computable set =⇒
compute X (Q) plus something hopefully small!
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Coleman’s Effective Chabauty

Reminder
ω ∈ Ω1(k) is regular is ∀P ∈ X (k̄), νP(ω) > 0
ω is of 2nd kind if it has residue zero ∀P ∈ X (k̄)

Reminder
X an is the rigid analytic space over Qp associated to
X/Qp. There is a specialization map from X an → X
mod p. The fibers of this map are called residue disks.
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Theorem 3 (Coleman Integral)
X/Qp nice curve. The p-adic integral ∫Q

P ω ∈ Qp defined
∀P,Q ∈ X (Qp),∀ω ∈ H0(X ,Ω1) is s.t.

Qp-linear in ω and additive∫Q
P ω + ∫Q′

P ′ ω = ∫Q′

P ω + ∫Q
P ′ ω.Thus for

(D) = ∑n
j=1((Qj)− (Pj)) ∈ Div 0

X (Qp) we define
∫
D
ω =

n∑
j=1

∫ Qj

Pj
ω

D principal =⇒ ∫
D ω = 0
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Coleman Integral
Fix P0 ∈ X (Qp) and P̃ ∈ X (Fp).

For 0 6= ω ∈ H0(XQp ,Ω1)

#
{
P ∈ X (Qp)| red(P) = P̃,

∫ P

P0
ω = 0

}
<∞

(not trivial!) ∫ P

P
ω = 0
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Corollary 1
Consider b ∈ X (Qp) and i : X → J the Abel-Jacobi
embedding.

Then

∃ J(Qp)× H0(XQp ,Ω1)→ Qp, (Q, ω) 7→ 〈Q, ω〉

additive in Q, linear in ω s.t.

〈[D], ω〉 =
∫
D
ω.
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Definition
AJb(P) := 〈i(P), ω〉 = ∫ P

b ω

Rmk: P ∈ J(Qp) of finite order =⇒ ∀ω, 〈P, ω〉 = 0.

We define

A := {ω ∈ H0(X ,Ω1)| ∀P ∈ J(Q), 〈P, ω〉 = 0}

as the subspace of annihilating differentials.
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i : X ↪→ J induces H0(JQp ,Ω1) ' H0(XQp ,Ω1)

similarly

J(Qp)× H0(J(Qp),Ω1)→ Qp, (Q, ωJ) 7→
∫ Q

0
ωJ

which induces the homomorphism

log : J(Qp)→ H0(JQp ,Ω1)∗
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Thus we get

X (Q)

��

X (Qp)
AJb

**��

J(Qp) // H0(JQp ,Ω1)∗ ' H0(XQp ,Ω1)∗
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Corollary 2
X/Q be a nice curve of genus g s.t. r < g =⇒
#X (Q) <∞.

Computing rational points via Coleman-Chabauty
method ⇐⇒ computing the finite set

X (Qp)1 :=
{
z ∈ X (Qp)|

∫ z

b
ω = 0, for ω ∈ A

}

By construction X (Q) ⊆ X (Qp)1
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Back to
C : y 2 = x 5 − 2x 3 + x + 1

4

for p = 3 construct η ∈ A

Span{ωi = x idx
2y }i=0,1 = H0(CQ3,Ω1)

η is a Q3-linear combination of ω0, ω1

compute
αi =

∫ (−1,−1/2)

(0,1/2)
ωi
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Using SageMath we get
α0 = 3+32+34+35+2·36+2·37+2·38+310+O(311)
α1 = 2+2 ·3+2 ·33 +34 +36 +2 ·38 +2 ·39 +O(310)

=⇒ ∫ (−1,−1/2)

(0,1/2)
α1ω0 − α0ω1 = 0

so we take
η = α1ω0 − α0ω1 ∈ A
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We want to compute X (Q3)1.

We need to compute the "indefinite" Coleman integrals{∫ Pt

(0,1/2)
η

}
t

where t runs over all residue disks.
Then we solve ∀z ∈ X (Q3) s.t.

∫ z

(0,1/2)
η = 0.
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P0 lift of a F3-point in the same residue disk at Pt .

Then ∫ Pt

(0,1/2)
η =

∫ P0

(0,1/2)
η +

∫ Pt

P0
η

where the first integral is a 3-adic constant and the
second one is computed via power series.
So we need to compute Coleman integrals between
points not in the same residue disk!
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Reminder
A wide open subspace of X an is the complement of the
union of a finite collection of disjoint closed disks of
radius λi < 1.

Consider
a, b ∈ Qp

P,Q,R ∈ U(Qp)
ξ, η ∈ Ω1(U) for U wide open subspace of X an
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Theorem 4 (More Coleman Integration)
linearity:

∫ Q

P
(aη + bξ) = a

∫ Q

P
η + b

∫ Q

P
ξ

additivity in endpoints:
∫ Q

P
η =

∫ R

P
η +

∫ Q

R
η

for ω defined over Qp, we have ∫Q
P ω ∈ Qp
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More Coleman Integration
U ′ ⊆ X wide, ϕ : U → U ′ rigid analytic map, f rigid on
U

Fundamental Thm of Calculus:
∫ Q

P
f = f (Q)− f (P)

change of variables: for ω′ ∈ Ω1(U ′),
∫ Q

P
ϕ∗ω′ =

∫ ϕ(Q)

ϕ(P)
ω′
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Let P,Q ∈ U(Qp) and consider X and hyperelliptic
curve.

Goal
Integrate ∫ Q

P
ω

for ω ∈ Ω1 of 2nd kind!

Using p-adic heights it is possible to integrate also forms
of the 3rd kind.
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Sketch of Explicit Coleman Integration

ϕ lift of p-Frobenius from the special fiber

compute a basis {ωi ∈ Ω1|ωi 2nd kind}
compute ϕ∗ωi via Kedlaya’s Algorithm
use Coleman integration to relate ∫Q

P ϕ∗ωi to
∫Q
P ωi

solve ∫Q
P ωi
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Back for the last time to

C : y 2 = x 5 − 2x 3 + x + 1
4

To resume:
C(Q)known = {∞, (0,±1

2), (∓1,±1
2)}

C(F3) = {∞, (0,±1), (1,±1), (2,±1)}

∫ Pt

(0,1/2)
η =

∫ P0

(0,1/2)
η +

∫ Pt

P0
η

Francesco Maria Saettone Towards a computational approach for Chabauty method April 8, 2020 38 / 43



Back for the last time to

C : y 2 = x 5 − 2x 3 + x + 1
4

To resume:
C(Q)known = {∞, (0,±1

2), (∓1,±1
2)}

C(F3) = {∞, (0,±1), (1,±1), (2,±1)}

∫ Pt

(0,1/2)
η =

∫ P0

(0,1/2)
η +

∫ Pt

P0
η

Francesco Maria Saettone Towards a computational approach for Chabauty method April 8, 2020 38 / 43



Compute the power series expansions of the "indefinite"
Coleman integrals {∫ Pt

(1/2)}.

every residue disk contains a rational pt =⇒ P0

rational
=⇒ ∫ P0

(0,1/2)
η = 0

now the computation is purely local
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We carry out the computation in the residue disks of

∞,
(
0, 12

)
,

(
±1, 12

)

Each residue disk has a simple zero at the rational point
and no others =⇒

C(Q3)1 = C(Q)known = C(Q)
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A Couple of Perspectives

Quadratic Chabauty
Computations and Algorithms for Q.C.
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Thanks for the attention!1

1I deeply thank Dr. Yelena Yuditsky for the precious help with the drawings.
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